msms'06

EFFECT OF REACTION TEMPERATURE ON PROPERTIES OF IRON(III) OXIDE NANOPARTICLES PREPARED BY SOLID-STATE ROUTE FROM IRON(II) ACETATE

Katerina Kluchova, Radek Zboril, Ivo Medrik, Jiri Pechousek, Jiri Tucek, Miroslav Mashlan

Nanomaterial Research Centre, Palacky University, Svobody 26, Olomouc, Czech Republic.

Thermally induced oxidative decomposition of iron(II) acetate was studied in air at various temperatures between 245 and 400 °C using thermogravimetry, DSC, elemental analysis, transmission electron microscopy, X-ray powder diffraction, low temperature and in-field Mössbauer spectroscopy and BET surface area measurements. Independently on reaction temperature, maghemite (γ -Fe₂O₃) was identified as the only decomposition product. In the temperature range of 320 – 400 °C, the particle size of maghemite can be controlled from 6 to 20 nm as manifested in TEM images. The increase in particle size with temperature is reflected also through decreasing surface area from 147 to 51 m²/g, narrowing of XRD lines and gradual prevailing of the sextet fraction at the expense of superparamagnetic one in Mössbauer spectra. Sample prepared at 320 °C containing small superparamagnetic particles (see TEM in Fig. 1a) was analyzed by in-field Mössbauer spectroscopy (20K/5T) to consider the structural ordering of maghemite and degree of spin frustration (see Fig. 1b). The ratio of

(A)

(B)

Figure 1. TEM micrograph (A) and in- field Mössbauer spectrum (B) of γ -Fe₂O₃ nanoparticles prepared from iron(II) acetate at 320 °C. Spectrum taken at 20 K in an external field of 5 T applied parallel with gamma-ray.

octahedral to tetrahedral Fe(III) positions being near to 5/3 evidences for the well ordered structure, however the increased intensities of the 2^{nd} and 5^{th} spectral lines confirm a high degree of spin frustration as expected due to the interparticle interactions and evolution of surface anisotropy [1]. All samples synthesized at 320-400 °C exhibit, after dispersion in bentonite matrix, the excellent contrast properties in magnetic resonance imaging. The anomalous decrease in surface area of samples heated at 245-300 °C is discussed with respect to the possible crystallization effect of primarily formed amorphous particles.

References:

[1] J. Tucek, R. Zboril, D. Petridis: J. Nanosci. Nanotech. 6, 926–947 (2006).

Notes: