PREPARATION AND PROPERTIES OF Fe AND Fe₃O₄ NANOPARTICLES EMBEDDED IN ZrO₂ MATRIX

P. Roupcová^{1, 2} and O. Schneeweiss¹

¹ Institute of Physics of Materials ASCR, Czech Republic

² Institute of Materials Engineering, Brno University of Technology, Czech Republic

The (Zr, ZrO_2) -(Fe, Fe₃O₄) nanocomposites are investigated due to their magnetic properties and resistance against negative influence of the surrounding atmosphere namely at elevated temperatures. The particles of pure Zr and its intermetallic phases can effect as a getter protecting the iron particles against oxidation.

We have investigated behaviour of the nanocrystalline powders prepared as a mixture from pure components. TEM and XRD were explored for standard phase composition and determination of the main particle size. Mössbauer spectra were collected by a standard transmission method at room temperature using ⁵⁷Co/Rh source. Magnetic measurements were carried out using vibrating sample magnetometer at high temperature at (293÷1093) K, in the vacuum (10⁻¹ Pa) and in the pure hydrogen (5N) atmosphere.

The structure study showed that as-prepared samples consist of Fe₃O₄ particles with the mean coherent length ~30 nm as determined by XRD which increased during the heat treatment up to ~50÷100 nm. The samples annealed in vacuum were formed by particles of ZrO₂-monoclinic, ZrO₂-tetragonal and ZrO₂-cubic and iron oxide (α -Fe₂O₃, Fe₃O₄ and FeO) phases. The annealing in hydrogen caused reduction of iron oxides to pure iron particles and clusters in ZrO₂. The magnetic parameters confirm full transformation of iron oxides to bcc iron.