Structure of Fe-species in Fe-ferrierite

M. Schwarze^a, Z. Sobalík^a, D. Nižnanský^b, <u>E.-G. Caspary</u>^c

^a J. Heyrovský Institute of Physical Chemistry, Academy of Sciences of the Czech Republic, Dolejškova 3, CZ-18223 Prague 8,

^b Charles University, Department of Inorganic Chemistry Prague,
 Czech Fac. of Mathematics and Physics, Joint Laboratory of
 Mössbauer Spectroscopy, V Holešovičkách 2,

^c Inst. of Physics, Acad. Sci. of the Czech Republic, Joint Laboratory of Mössbauer Spectroscopy, V Holešovičkách 2, CZ-180 00 Prague

Zeolites • $(Si^{IV}_{2}O_{4}) \rightarrow (Si_{2-x}Al^{III}_{x}O_{4})M^{II}_{x/2}$ $(M^{n}_{2/n}Al_{2}O_{4})x (SiO_{2})y H_{2}O$

- vast internal surface
- catalytic reactions
 (NO_x reduction to Nitrogen)

Measurements

- In sito measurements
- 57C source in Rh matrix.
 Calibration with α-Fe.
- measurements on Fe⁵⁷ enriched samples
- The aim is to distinguish different Fe-forms (valence; position).

APPARATUS FOR MÖSSBAUER SPECTROSCOPY

States of measurement

- 1) <u>fresh sample</u>: measured in air at room temperature
- <u>dehydration</u>: measured at room temperature in vacuum -evacuated at 450°C for 3 hours.
- 3) oxidation with O_{2} ; measured at RT in vacuum
 - evacuated at 450°C for 3 hours.
 - oxygen (p=100 Torr) infused.
 - sample kept in an environment of O₂ at 450°C for 30 min.
- 4) <u>oxidation by N_2O : measured at room temperature in vacuum</u>
 - evacuated at 450°C for 3 hours.
 - N_2O (p = 100 Torr) was infused.
 - sample kept in an environment of N₂O at 250°C for 30 min.
- 5) <u>oxidation by O_2 + re-oxidation by N_2O </u>: ... RT+vacuum
 - environment of oxygen at 450°C for 30 min.
 - environment of N₂O at 250°C for 30 min.

Fitting

We decomposed all spectra in a common set of 6 sub-spectra.

Our aim was to assign each sub-spectrum to a **position** of iron in the sample and the iron **valence**.

To approach this aim we used: **Mössbauer parameters** and **comparison of intensities** in different measurements.

Fe-ferrierite - Subspectra

	assignment	ISshift δ (mm/s)	Quadrupole splitting ΔE_Q (mm/s)	
1	Fe (3+) cationic site	0,36	1,4	
2	Fe (3+) cationic site	0,32	1,9	
3	Fe (3+) - framework	0,40	2,2	
4	Sextet-Magnetically ordered iron or iron pairs			
5	Fe (2+) - cationic site	0,9	0,7	
6	Fe (2+) - cationic site	1,2	2,0	

1,9

6

Fe-ferrierite after oxidation by O2

T7	δ (mm/s)	$\Delta E_Q \text{ mm/s}$)	area (%)
1	0,36	1,35	4,2
2	0,32	1,88	59,3
3	0,37	2,12	3,3
4			
5	0,89	0,61	21,5
6	1,13	2,38	11,5

HTT	Isomer shift ð (mm/s)	Quadrupole splitting ΔE_Q (mm/s)	Relative area (%)	Fe
3	0,37	2,12	4,8	2+
	22.7		22.3	
5	0,92	0,65	53,2	3+
6	1,10	2,05	42,0	3+

T6 LTT	δ (mm/s)	$\Delta E_Q \text{ mm/s}$)	area (%)
1	- 65		
2			
3	0,40	2,23	4,2
4			
5	0,94	0,69	64,7
6	1,18	2,04	31,0

Reduction

Oxidation

Results

- The spectra, decomposed to six subspectra, describes all forms of iron (positions, valencies).
- Subspectra can be assignde to different valencies of iron usin Moessbauer parameter.
- In Fe-ferrierite with (Fe conc. <1%) iron is predominantly in α and β position. (no oxides)
- By compartion with IR measurements subspectra can be assigned to iron in α and β position.($I_{\alpha}/I_{\beta} \sim 3/2$)
- Intensities for and after oxidation indicate different reactivities for oxidation with N_2O and O_2