Lomonosov Moscow State University Department of Physics

MÖSSBAUER INVESTIGATIONS OF NATURAL AND SYNTHETIC TOCHILINITE AND VALLERIITE

N.I. Chistyakova, T.V. Gubaidulina, V.S. Rusakov

The main task and objects of investigations

The main task of investigations

The investigation of structure of iron-magnesium tochilinite and valleriite; the research of magnesium relative content in the initial mixture influence on synthetic tochilinite structure.

Subjects of investigations

1. Samples obtained as a result of the tochilinite synthesis process under different conditions (temperature of synthesis and Fe/Mg ratio in the initial mixture).

- 2. Samples of natural tochilinite.
- 3. Samples of natural and synthetic valleriite.

Methods of investigations

⁵⁷Fe Mössbauer spectroscopy; the model fitting and extraction of hyperfine parameter distribution functions.

Conditions of tochilinite synthesis process

Tochilinite synthesis process was realized by interaction of Fe(II)-hydroxide with H_2S in alkaline medium at different temperatures and Fe/Mg ratio in the initial mixture.

№ series	t _s , °C	content of Fe (v _{Fe}), mol	content of Mg (v _{Mg}), mol	relative content of Mg (n _{Mg}), %
Ι	160	15·10 ⁻³	(0.67÷4.17) ·10 ⁻³	4.30÷21.80
II	160	11.10-3	(1.54÷8.23) ·10 ⁻³	12.3÷42.80
III	180	15.10-3	(0.67÷3.46) ·10 ⁻³	2.30÷21.80
IV	180	11.10-3	(0.50÷2.63) ·10 ⁻³	4.30÷22.10

Structure of tochilinite Chemical formula: 2Fe_{1-x}S·n(Mg,Fe,Al)(OH),

 $0.08 \le x \le 0.28; \ 1.58 \le n \le 1.75$

Brucite-like layers (Mg,Fe,Al)(OH)₂

Sulfide layer $Fe_{1-x}S$

C1 $a_{tch} = 5.37 \text{ Å}, b_{tch} = 15.60 \text{ Å},$ $c_{tch} = 10.72 \text{ Å}$

Structures of mackinawite and brucite

Brucite $Mg(OH)_2$ P3m1, z = 1 $a_{br} = b_{br} = 3.258 \text{ Å}, c_{br} = 4.605 \text{ Å}$ Mackinawite FeS P4/nmn, z = 2 $a_m = b_m = 3.679$ Å, $c_m = 5.047$ Å

Structure of valleriite

Chemical formula: $CuFeS_2 \cdot \{n(Mg,Fe)(OH)_2 + m(Al,Fe)(OH)_3\}$ $1.3 \le n \le 1.6; 0 \le m \le 0.3$

Brucite-like layers {(Mg,Fe)(OH)₂+(Al,Fe)(OH)₂}

Sulfide layer CuFeS₂

Brucite-like layers: $P\bar{3}m \ a = b = 3.07 \text{ Å}, \ c = 11.37 \text{ Å}$ Sulfide layers: $R\bar{3}m \ a = b = 3.792 \text{ Å}, \ c = 34.10 \text{ Å}$

Structure of chalcopyrite

CuFeS₂ I42d $a_{ch} = b_{ch} = 5.25$ Å, $c_{ch} = 10.32$ Å

Mössbauer spectrum of synthetic tochilinite

$$\begin{split} \delta_{s} &= 0.45 \pm 0.01 \text{ mm/s} \\ \epsilon_{s} &= 0.08 \pm 0.01 \text{ mm/s} \\ \delta_{br1} &= 1.12 \pm 0.01 \text{ mm/s} \\ \epsilon_{br1} &= 1.19 \pm 0.01 \text{ mm/s} \\ \delta_{br2} &= 0.87 \pm 0.02 \text{ mm/s} \\ \epsilon_{br2} &= 0.94 \pm 0.02 \text{ mm/s} \end{split}$$

sulfide layers

brucite-like layers

Mössbauer spectra of investigated samples of series I and II

Mössbauer spectra of investigated samples of series III and IV

Relative intensities of ⁵⁷Fe nuclear subspectra of obtained phases as functions of Mg relative content in the initial mixture

Relative intensities of ⁵⁷Fe nuclear subspectra of obtained phases as functions of Mg relative content in the initial mixture

 I_B/I_A ratio of subspectrum intensities for Band A-positions of Fe atoms in magnetite; Mg relative content in magnetite

 I_B/I_A ratio of subspectrum intensities for Band A-positions of Fe atoms in magnetite; Mg relative content in magnetite

Relative contents of Mg in tochilinite as functions of Mg relative content in the initial mixture

Relative contents of Mg in tochilinite as functions of Mg relative content in the initial mixture

Relative intensities of ⁵⁷Fe nuclear subspectra corresponding to Mg atoms positions in brucite-like layers of tochilinite

Relative content of Fe in tochilinite brucitelike layers as function of Mg relative content in tochilinite brucite-like layers

Chemical formula of tochilinite: $2Fe_{1-x}S \cdot 1.67k(Mg_t, Fe_{1-t})(OH)_2$ x = 0; 0.08; 0.28 k = 2:1; 1:1; 1:2 $0 \le t \le 1$

Pictures of samples of natural tochilinite obtained by electron-microscope methods

Tochilinite $Fe_{0.67}S \cdot (Mg_{0.75}Al_{0.25})(OH)_2$ (sample 1)

Tochilinite $2Fe_{0.92}S \cdot 1.61(Mg_{0.81}Fe_{0.19})(OH)_2$ (sample 2, x1000)

Mössbauer spectra of natural tochilinite samples

 $Fe_{0.67}S \cdot (Mg_{0.75}Al_{0.25})(OH)_2$ $\delta_s = 0.47 \pm 0.01 \text{ mm/s}$ $\epsilon_s = 0.12 \pm 0.01 \text{ mm/s}$ $I_s = 11.6 \pm 1.0 \%$

 $\begin{aligned} &2Fe_{0.92}S\cdot 1.61(Mg_{0.81}Fe_{0.19})(OH)_2 \\ &\delta_s = 0.45 \pm 0.01 \text{ mm/s} \\ &\epsilon_s = 0.09 \pm 0.01 \text{ mm/s} \\ &I_s = 29.3 \pm 2.0 \ \% \\ &\delta_{br} = 1.14 \pm 0.01 \text{ mm/s} \\ &\epsilon_{br} = 1.31 \pm 0.01 \text{ mm/s} \\ &I_{br} = 1.5 \pm 1.0 \ \% \end{aligned}$

Mössbauer spectra of natural valleriite samples

 $\varepsilon_{\rm br} = 0.28 \pm 0.01 \text{ mm/s}$ > Fe³⁺- OH $\delta_{br} = 1.29 \pm 0.06 \text{ mm/s}$ $\epsilon_{\rm br} = 1.14 \pm 0.06 \text{ mm/s}$ Fe²⁺- OH $\delta = 0.17 \pm 0.01 \text{ mm/s}$ $\epsilon = 0.00 \pm 0.01 \text{ mm/s}$ CuFeS₂ $\delta_{\rm br} = 0.31 \pm 0.01 \ {\rm mm/s}$ $Fe^{3+}-OH$ $\epsilon_{\rm br} = 0.31 \pm 0.01 \ {\rm mm/s}$

 $\varepsilon_{\rm br} = 1.25 \pm 0.02 \text{ mm/s} > \text{Fe}^{2+} - \text{OH}$

Mössbauer spectra of synthetic valleriite samples

$$\begin{cases} \delta_{br} = 0.38 \pm 0.01 \text{ mm/s} \\ \epsilon_{br} = 0.22 \pm 0.01 \text{ mm/s} \\ I_{br} = 8 \pm 2 \% \\ \delta = 0.25 \pm 0.01 \text{ mm/s} \\ \epsilon = 0.00 \pm 0.01 \text{ mm/s} \\ H_n = 345 \pm 1 \text{ kOe} \\ I = 11 \pm 2 \% \end{cases}$$
 CuFeS₂
$$\begin{cases} \delta_{br} = 0.39 \pm 0.01 \text{ mm/s} \\ \epsilon_{br} = 0.31 \pm 0.01 \text{ mm/s} \\ I_{br} = 19 \pm 2 \% \\ \delta = 0.25 \pm 0.01 \text{ mm/s} \\ \epsilon = 0.00 \pm 0.01 \text{ mm/s} \\ R_n = 351 \pm 1 \text{ kOe} \\ I = 68 \pm 1 \% \end{cases}$$
 Fe³⁺- OH

Main results and conclusions

Samples of synthetic and natural iron hydroxide-sulfides: tochilinite and valleriite were investigated by Mössbauer spectroscopy methods.

Results of tochilinite investigations:

- Tochilinite, magnetite, troilite, greigite, pyrite and pyrrhotite were obtained in synthetic samples. Dependencies of relative content of obtained phases from Mg relative content in the initial mixture were received.
- The increase of tochilinite relative content in samples under the increase of Mg relative content in the initial mixture was observed in samples synthesized at $t_s = 160^{\circ}$ C and $v_{Fe} = 15$ mmol; and in samples synthesized at $t_s = 180^{\circ}$ C and $v_{Fe} = 11$ mmol in the initial mixture.
- It was shown that Mg atoms occupied one of two nonequivalent positions into brucite-like layers at entering into tochilinite structure.
- It was confirmed that in synthetic tochilinite structure equal number of sulfide and brucite-like layers conjugated.

Main results and conclusions

The comparison of Mössbauer spectra of synthetic and natural tochilinite achieved that parameters of subspectra corresponded to sulfide and brucite-like layers in natural and synthetic tochilinite closely related.

Results of valleriite investigations:

- Values of hyperfine interaction parameters were determined and crystallographic identifications of ⁵⁷Fe nuclear subspectra was carried out.
- It was established that in brucite-like layers of synthetic vallerriite divalent Fe cations were absented in contrast to natural valleriite.