Fe₃C NANOPOWDER PREPARED BY LASER-INDUCED PYROLYSIS

B. David, N. Pizúrová, O. Schneeweiss

Institute of Physics of Materials, AS CR, Brno, Czech Republic

M. Klementová

Institute of Inorganic Chemistry, AS CR, Řež, Czech Republic

E. Šantavá Institute of Physics, AS CR, Prague, Czech Republic

M. Mašláň, R. Zbořil Faculty of Science, Palacky University, Olomouc, Czech Republic

F. Dumitrache, I. Morjan, R. Alexandrescu, National Institute for Lasers, Plasma and Radiation Physics, Bucharest, Romania

LASER-INDUCED PYROLYSIS OF GASES

J.S. Haggery, W.R. Canon in Steinfeld (Ed.): Laser-Induced Chemical Processes, Plenum Press, New York, 1981

 $C_2H_4 + h\nu \rightarrow C_2H_4^*$

 $\mathbf{Fe(CO)_5}(l) \rightarrow \mathbf{Fe}(s) + 5\mathbf{CO}(g)$

Catalytic decomposition of C_2H_4 on a hot Fe-particle surface

C diffuses into particle interior

Fe₃C (cementite) is formed

Fe₃C clearly detected: the mean coherence length <<u>L> = 20 nm</u>

The presence of Fe_XO_Y not excluded due to small particle size !

α-Fe not proved !

Fe₃C NANOPOWDER - Raman spectrum

Fe₃C NANOPOWDER – Mössbauer spectra

 $\begin{array}{lll} \mbox{Fe}_{3}\mbox{C} \mbox{ superposition } & 87 \ r.a.\% \\ \mbox{Fe}_{s} & B_{hf} = 21.2 \ T & \epsilon_{Q} = \ 0.02 \ mm/s & \bar{\delta} = 0.21 \ mm/s & 29 \ r.a.\% \\ \mbox{Fe}_{g} & B_{hf} = 20.3 \ T & \epsilon_{Q} = \ 0.02 \ mm/s & \bar{\delta} = 0.21 \ mm/s & 58 \ r.a.\% \end{array}$

Sextet 3 r.a.% B_{hf} = 18.3 T $ε_Q$ = -0.01 mm/s δ = 0.18 mm/s

Distribution 8 r.a.% $B_{hf} = 15.9 \text{ T} \epsilon_Q = 0.36 \text{ mm/s} \delta = 0.08 \text{ mm/s}$ $\Delta B_{hf} = 14.2 \text{ T}$

Fe₃C NANOPOWDER – Mössbauer spectra

Fe3C superposition84 r.a.%Fe3 B_{hf} = 25.5 T $ε_Q$ = 0.00 mm/s $\overline{\delta}$ = 0.35 mm/s30 r.a.%Fe3 B_{hf} = 24.3 T $ε_Q$ = 0.02 mm/s $\overline{\delta}$ = 0.35 mm/s54 r.a.%

Fe₃C NANOPOWDER - HRTEM

Two different types of nanoparticles observed:

<u>Spot C</u> crystalline particles

<u>Spot D</u>

less crystalline

B. David et al.Surf. Interface Anal.38 (2006) 482

Fe₃C NANOPOWDER - Magnetic measurements: VSM

T_c(n-Fe₃C) = 227 °C bulk: 210 °C

Transition from ferromagnetic state into paramagnetic state is smeared out

B. David et al.JMMM 304 (2006) e787

Magnetic measurements: PPMS

ascribed to Fe₃O₄ (?!)

Interaction of ferromagnetic particles

=> superferromagnetic behaviour

SUMMARY

- I. Synthesized **Fe₃C** nanopowder:
 - according to <u>XRD and TEM</u>: particle size of Fe_3C is $\emptyset < 30$ nm
 - <u>Mössbauer analysis</u>:
 Fe₃C contains cca 84 % of all Fe atoms
 Fe₃O_Y contains cca 11 % of all Fe atoms
- II. It is difficult to obtain pure single phase Fe₃C:
 - some synthesized small α -Fe nanoparticles have not reacted with $C_2H_4 \Rightarrow$ were not covered by carbon \Rightarrow oxidized and so Fe_XO_Y formed
 - the synthesis parameters must be optimized
- III. Magnetic properties of Fe₃C nanopowder:
 - values of H_c(n-Fe₃C) and σ_s(n-Fe₃C)
 <u>can be even higher if single phase non-agregated particles</u> <u>are obtained</u>

Fe₃C NANOPOWDER - Magnetic measurements

$$\begin{split} &\mathsf{H}_{\mathsf{C}}(\mathsf{n}\text{-}\mathsf{Fe}_{3}\mathsf{C}) = 42 \text{ kA/m} & \text{bulk: ?} \\ &\sigma_{\mathsf{S}}(\mathsf{n}\text{-}\mathsf{Fe}_{3}\mathsf{C}) = 96 \text{ Am}^{2}/\text{kg} & \text{bulk: 130 Am}^{2}/\text{kg} \end{split}$$

Fe₃C NANOPOWDER - TEM

