# Surface oxidation of Fe-Si alloy

A.R. Lashin<sup>1</sup>, O. Schneeweiss<sup>1</sup>, P.Sajdl<sup>2</sup>

- <sup>1</sup>Institute of Physics of Materials, Academy of Sciences of the Czech Republic, Žižkova 22, CZ-616 62 Brno, Czech Republic
- <sup>2</sup>Institute of Chemical Technology, Department of Power Engineering, Technicka 3, 16628 Prague, Czech Republic

#### Aim

## Investigation of phase composition at surface of bcc $Fe_{94}Si_6$ alloy based on heat treatment.



Samples: 11×11 × 0.3 mm plates of Fe–3wt.%Si (grain oriented steel sheet) polished using the best metallography procedure.

#### Mössbauer spectroscopy

- 1- Standard Mössbauer spectra were measured in scattering geometry with detection 14.4 keV gamma radiation using  $2\pi$  proportional counter.
- 2- <sup>57</sup>Fe CEMS spectra were measured using <sup>57</sup>Co in Rh source at room temperature in gas-filled detector

#### XPS

spectra were taken in Institute of Chemical Technology, Department of Power Engineering, Prague, Czech Republic for this sample using ESCA equipment using 1.4867 keV X-ray radiation on Fe 2p edge. Surface cleaning by repeated Ar sputtering was carried out in situ.



- 1- CEMS spectra for the polished sample contains three sextets
  S1: δ= 0.00 mm/s, σ=0.00 mm/s, B<sub>hf</sub>=33.1 T
  S1: δ= 0.05 mm/s, σ=0.00 mm/s, B<sub>hf</sub>=30.9 T
  S1: δ= 0.11 mm/s, σ=-0.04 mm/s, B<sub>hf</sub>=27.4 T
  - 2- CEMS spectra for the polished and etched sample (in  $HF+H_2O_2$ ) showed:
  - a) Three sextets for the Substrate.
  - b) Fe (III),  $\delta$ =0.36 mm/s and  $\epsilon_Q$ =0.82 mm/s, with A=0.11.
  - 3-CEMS spectra after annealing in vacuum for 2 hours at 780 °C showed:
  - a) Three sextets for the substrate.
  - b) Fayalite  $Fe_2SiO_4$ ,  $\delta$ =1.15 mm/s and  $\epsilon_Q$ =2.72 mm/s, with A=0.04.
  - c) Fe(III)  $\delta{=}0.42$  mm/s and  $\epsilon_Q{=}0.78$  mm/s , with A=0.01.



### 1-SGMS spectra for the polished sample showed:

Three sextets for the substrate

S1:  $\delta$ = 0.00 mm/s,  $\sigma$ =0.00 mm/s, B<sub>hf</sub>=33.1T S1:  $\delta$ = 0.04 mm/s,  $\sigma$ =0.00 mm/s, B<sub>hf</sub>=30.6T S1:  $\delta$ = 0.10 mm/s,  $\sigma$ =0.00 mm/s, B<sub>hf</sub>=27.4T

2- SGMS spectra for the polished and etched sample (in  $HF+H_2O_2$ )

3-SGMS spectra after annealing in vacuum for 2 hours at 780 °C

#### **XPS** measurement

Su3 3



477 min



#### Annealing in oxygen

- Four samples have been ground and polished both sides and then annealed in oxygen for 10 minutes at 500 °C, 600 °C, 700 °C and 780 °C respectively.
- The CEMS measurements for the four samples showed hematite  $\alpha$ -Fe<sub>2</sub>O<sub>3</sub>, Fe with 0 Si in nn (pure iron) on the surface of these samples in addition to the substrate which contains  $\alpha$ -FeSi.



The CEMS measurements for the four samples showed: 1-Hematite  $\alpha$ -Fe<sub>2</sub>O<sub>3</sub>(--) a) At 500 °C  $\delta = 0.36$  mm/s,  $\sigma = -0.14$  mm/s,  $B_{hf} = 51.2$  T b) At 600 °C  $\delta = 0.37$  mm/s,  $\sigma = -0.16$  mm/s,  $B_{hf} = 51.5$  T c) At 700 °C  $\delta = 0.37 \text{ mm/s}, \sigma = -0.16 \text{ mm/s}, B_{hf} = 51.5 \text{ T}$ d) At 780 °C  $\delta = 0.37$  mm/s,  $\sigma = -0.16$  mm/s,  $B_{hf} = 51.6$  T 2- Fe with 0 Si in nn (--)

The concentration of hematite which has been detected on the surface of these samples increases by increasing the annealing temperature



#### Annealing in Ar

- Two samples have been ground, polished and annealing in oxygen for 10 minutes at 500 °C and 600 °C and then polished once more and annealed in Ar for 10 minutes at 500 °C and 600 °C respectively.
- CEMS spectra for these two samples showed magnetite  $Fe_3O_4$ , fayalite  $Fe_2SiO_4$ , and Fe(III) where the concentration of magnetite at 500 °C was greater than that at 600 °C.





#### 1-Influence of Surface preparation

- a) Ground and polished sample showed only  $\alpha$ -FeSi
- b) After etching this sample in  $HF+H_2O_2$ ,  $Fe^{3+}$  formed
- c) After annealed in vacuum fayalite  $Fe_2SiO_2$  and  $Fe^{3+}$  are formed.
- d) Oxide and fayalite phases were confirmed by XPS measurement.

#### 2-Annealing in Oxygen

- a) In the temperature range 500 °C to 780 °C exhibiting the formation of hematite  $\alpha$ -Fe<sub>2</sub>O<sub>3</sub> on the surface of the samples.
- b) The relative concentration of hematite increases with increasing temperature.

#### 3-Annealing in Argon

- a) Annealing in Ar at 500 °C caused the formation of magnetite, fayalite  $Fe_2SiO_4$  and  $Fe^{3+}$ .
- b) Annealing at 600 °C caused the formation of magnetite, Fe with 0 Si in nn and fayalite on the surface.
- c) The relative concentration of magnetite ate 500 °C is higher than that at 600 °C.

Acknowledgements

The project was supported by the Grant Agency of the Academy of Sciences of the Czech Republic (Contract No. IAA1041404).

