Redox properties of iron in porous ferrisilicates K. Lázár¹, G. Pál-Borbély², Á. Szegedi², P. Fejes³, F. Martínez⁴,

Institute of Isotopes, HAS, Hungary, ² Chem. Res. Cent, HAS, Hungary, ³ Dept. of Appl Chem.,

University of Szeged, Hungary, ⁴ Dept. of Chem. Eng., Univ. Rey Juan Carlos, Madrid, Spain,

Aim: To demonstrate that several properties of porous ferrisilicates are influenced by redox processes taking place on iron ions (implications for catalytic processes are also considered)

Scheme:

- 1. Introduction: structures (distinction of micro- and mesoporous systems, ferrisilicates)
- 2. Microporous systems (1): Framework/extra-framework siting
- 3. Microporous systems (2): Migration of extra-framework ions
- 4. Microporous systems (3): Stabilization of Fe²⁺ in oxidizing atmosphere
- 5. Mesoporous systems (1): Redox processes in the partly amorphous pore wall of MCM-41
- 6. Mesoporous systems (2): Iron leaching from the embedded bulk Fe_2O_3 ; SBA-15
- 7. Conclusions

1. Introduction: micro- and mesoporous structures:

Microporous structures: 3 D crystallinity, ~ 0.5 nm pores (in average)

Replacement of the central Si ion to Fe: $[Si^{(4+)}O_{4/2}] \Rightarrow [Fe^{(3+)}O_{4/2}]^{0}$

msms06, Kocovce - 2006 June 12-14

2. Microporous (1): Distinction of FW/EFW sitings

Framework (FW) and extra-framework (EFW) positions

FW and EFW can be distinguished in the Mössbauer spectra

2. Microporous (1): $FW \leftrightarrow EFW$ redox (2)

Identification of the various Fe³⁺ components (QS):

FW (assymmetric, Bronsted) Si-O-Fe(OH)-O-Si : 1.7 - 2.0 mm/s FW (H₃O⁺, Na⁺, FeO⁺, Fe(OH)⁺) less distorted : 1.2 - 1.4 mm/s EFW: usually tends to complete octahedral sym : 0.8 - 1.2 mm/s (water chemisorption around the FW and EFW (α , β , γ) sites

msms06, Kocovce - 2006 June 12-14

4

2

Next step: Exposure to reaction mixture i.e. $\sim H_2$

Observations:

• At the start: FW substitution dominates,

- in H₂: $Fe^{3+} \rightarrow Fe^{2+}$ i.e. $FW \rightarrow EFW$ removal, reduction of FW Fe³⁺ in part ("FW is reduced")
- repetition (2nd cycle) shows the higher EFW,
- Fe_{FW}–O –Fe_{EFW} pairs are probably formed
- \Rightarrow Fe³⁺ and Fe²⁺ may exist together, redox processes mostly on EFW

msms06, Kocovce - 2006 June 12-14

2. Microporous (1) FW/EFW (4) data for MCM-22

			1 st cycle Repeated cycle		se		
Treatm/ (T_m) .	Comp.	IS	QS	RI	IS	QS	RI
Calc.	Fe ³⁺	0.29	0.58	27			
(<i>T_m</i> : 300 K)	Fe ³⁺				0.36	0.73	35
	Fe ³⁺	0.36	1.02	73	0.36	1.26	65
Evacuation	Fe ³⁺ FW	0.24	1.92	56	0.26	2.05	51
at 690	Fe ³⁺	0.33	1.22	28	0.32	1.27	47
(<i>T_m</i> : 300 K)	Fe ²⁺ EFW	1.14	1.86	16	1.14	2.26	2
H_2 at 620 K	Fe ³⁺				0.06	0.23	8
(<i>T_m</i> : 490 K)	Fe ³⁺ FW	0.13	1.73	39	0.12	1.76	30
	Fe ³⁺	0.34	0.50	17			
	Fe ²⁺ EFW	0.92	1.57	44	<i>0.9</i> 5	1.40	62

2. Microporous (1) FW / EFW: Reactions on Fe-MFI: role of different acidities (Bronsted vs. Lewis)

Acid-base reactions:

Si/Fe= 67, 35, 27.5

1. Disproportionation of toluene:

$$2 \longrightarrow -CH_3 \rightarrow + CH_3 - CH_3 \quad (o, m, p)$$

2. Alkylation:

$$\bigcirc CH_3 + C_2H_2 \rightarrow CH_3 - \bigcirc -C_2H_3$$

Iron	Alk /	Alk /	Disp /	Disp /
wt %	(g cat) ⁻¹	(Fe at) ⁻¹	(g cat) ⁻¹	(Fe at) ⁻¹
1.5	4.8	3.2	1.8	1.2
2.8	9.0	3.2	3.6	1.3
3.6	10.7	3.0	5.3	1.5

Conv. (Fe at)⁻¹ approx. equal \Rightarrow activity is correlated to number of Fe atoms

2. Microporous (1) FW /EFW : Reaction on MFI: In situ Mössbauer spectra

FW: Fe(III)-Td and EFW: Fe(II)

In H₂ (after 620 K /H₂):

r= Si/Fe	Comp.	IS	QS	RI
	Fe(III)-Td	0.15	1.24	44
27.5	Fe(II)-Td	0.66	0.70	9
	Fe(II)-Oh	1.01	1.76	26
	Fe(II)-Oh	1.19	2.25	21
	Fe(III)-Td	0.25	1.92	59
35.0	Fe(II)-Td	0.66	0.66	20
	Fe(II)-Oh	1.03	2.10	21
67.0	Fe(III)-Td	0.23	1.76	85
	Fe(II)-Oh	1.13	2.06	15

2. Microporous. (1) Participation of FW and EFW iron in the reactions

Conclusions on (FW/EFW):

- FW / EFW iron may exist together,
- $Fe^{3+} \leftrightarrow Fe^{2+}$ proceeds mostly on EFW,
- reactions may proceed on both: FW: Si-O-Fe(OH)-O-Si Bronsted and EFW Fe2+, Fe3+ Lewis)

3. Microporous (2) Migration and change of EFW ions - MFI

FeZSM-5 (Si/Fe ~ 200)

Sequential spectra - various stages:

- as rec: mixed EFW ions: NH₄⁺, Na⁺, H₃O⁺
- evac: $NH_4^+ \rightarrow NH_3^+ + H^+$, $H_3^-O \rightarrow H_2^-O^+ + H^+$
- $H_2: Fe^{3+}_{EFW} \rightarrow Fe^{2+}_{EFW}$, Fe^{3+}_{FW} maintained
- N_2O : $Fe^{2+}_{EFW} \rightarrow Fe^{3+}_{EFW}$, large QS \Rightarrow distorted
- + H₂ again : sharper lines, distorted Fe²⁺ and Fe³⁺ Si-O(Fe_{FW}OH)-OSi ,

Interpretation:

The mixture of EFW ions at the starting state

- is converted to H⁺ Bronsted form -O-Si-O-Fe(OH)-O-Si, and
- on the EFW Fe ions reversible Fe²⁺ ↔ Fe³⁺ may proceed (oxide particles are absent)
- ⇒ Migration and redistribution of EFW ions may take place

3. Microporous (2): migration of EFW (2)

Another MCM-22 sample (Si/Fe ~ 20) sequential spectra

1st series: similar as previously, Na⁺, H₃O⁺ removal, the oxidation & reduction cycle rearranges the EFW ions:

2nd series:

- Fe_{FW}-O-Fe_{EFW} due to the larger concentration of Fe
- The formation of Si-O-Fe(OH)-O-Si centres is expressed upon the 2nd H₂ treatment,
- simultaneosly neutral FeO is also formed, and is trapped in the cages

msms06, Kocovce - 2006 June 12-14

4. Microporous (3): Stabilisation of Fe²⁺ in oxidizing atmosphere

msms06, Kocovce - 2006 June 12-14

5. Mesoporous (1) : MCM-41 two different syntheses compared

14

5. Mesoporous (1): Redox processes in the pore walls of MCM-41

MCM-41: (Si/Fe ~ 140) - hydrothermal

msms06, Kocovce - 2006 June 12-14

5. Mesoporous (1) MCM-41 pore wall stability (methanolic synthesis)

Pyridine chemisorption

Partly amorphous structure \Rightarrow expressed participation of silanolicSi-OH groups can be proposedin H_2 propagation of reduction by $(H_2)^+$ may be suggested (since the structure is rich in -OH groups):(1st step) \equiv Si-O-Fe³⁺= + $H_2 \rightarrow \equiv$ Si-O- $(H_2)^+$ + Fe²⁺=(Propagation) \equiv Si-O- $(H_2)^+$ + Si-OH \rightarrow Si-OH + Si-O- $(H_2)^+$ (2nd step) \equiv Si-O- $(H_2)^+$ + Si-O-Fe³⁺= \rightarrow 2 Si-OH + Fe²⁺=

msms06, Kocovce - 2006 June 12-14

CO oxidation

6. Mesoporous (2) Fe-SBA-15(2) – crystallinity and iron oxide particles

6 Mesoporous (2) Fe-SBA-15 Mössbauer characterization

msms06, Kocovce - 2006 June 12-14

6. Mesoporous (2) Fe-SBA-15 catalysis: activity and stability

Expressed iron leaching: Lost iron, relative % (90 min.) DS-1 DS-2 DS-3 PS 79 8 5 70

(The absolute amounts are similar: ca. 1 wt % at DS-s, and 1.5 at PS)

6. Mesoporous (2) Fe-SBA-15 activity and stability of reused iron-containing samples

- The ionic contribution is missing from the centre of Mössbauer spectra:
- \Rightarrow the leached iron is mostly of ionic character,
- The catalytic activity reaches to a similar level at the end both at iron rich DS-2, DS-3 and at iron depleted DS-1:
- ⇒ the catalytic activity is related to the isolated ionic component

Spent samples (rich in iron):

7. Conclusions

Occurrence and role of redox processes in porous ferrisilicates have been demonstrated:

- 1) Determining role of the structure is shown
 - (3D microporous vs. partly amorphous pore walls in the mesoporous hosts)
- 2) In microporous hosts the FW / EFW distinction is clear.
 - FW is Bronsted acidic, whereas EFW is of Lewis character,
 - $Fe^{3+} \leftrightarrow Fe^{2+}$ primarily proceeds on EFW ions,
 - migration/redistribution of EFW ions can be traced under reaction conditions
 - particular species, (e.g. Fe^{2+}) with enhanced activity can be stabilized (e.g. in N_2O)
- 3) In mesoporous host the pore wall is partly amorphous, thus the FW / EFW distinction is less suitable.
 - $Fe^{3+} \leftrightarrow Fe^{2+}$ may proceed on iron located in the pore walls.
 - the distorted Fe³⁺ (large QS) exists, however, does not exhibit Bronsted acidity
 - catalytic activity in redox processes can be attributed to iron of ionic dispersion