# Mössbauer studies of SnO<sub>2</sub> powders doped with dilute <sup>57</sup>Fe, prepared by a sol-gel method

### Kiyoshi NOMUR<sup>1</sup>, Junko SAKUMA<sup>1,2</sup>, and Masuo TAKEDA<sup>2</sup>,

- <sup>1</sup> School of Engineering, The University of Tokyo
- <sup>2</sup> Faculty of Science, Toho University

- 1. TiO<sub>2</sub> films doped with Fe (ICAME05)
- 2. SnO<sub>2</sub> powders doped with <sup>57</sup>Fe (MSMS06)

Both material candidates for spintronics applications

#### Background

Diluted magnetic semiconductor (DMS), which shows ferromagnetism at room temperature, is prospected as new materials with both semiconductor and magnetic properties. The development is currently attracting interest due to their potential use in spintronics applications, such as a new transistor and spin FET.

A lot of study of GaAs, GaN and InP semiconductors doped with Mn have been reported. Unfortunately, these materials showed ferromagnetism only below room temperature.

It was found recently by Y. Masumoto et al that DMS transparent films of  $TiO_2$  doped with Co show the ferromagnetic properties at room temperature [1]. (Y.Masumoto, et al, APL 78(2001)

Hi Min Lee et al reported that the ferromagnetic behavior of  $Ti_{1-x}$  <sup>57</sup>Fe<sub>x</sub>O<sub>2</sub> increases with the decrease of doped <sup>57</sup>Fe [2].

(Hi Min Lee et al, TRANSACTION ON MAGNETICS, 39(2003)2788)

#### ICAME05

## CEMS study on diluted magneto-transparent titanium oxide films deposited by pulsed laser ablation

# <u>K. Nomura<sup>1</sup></u>, K. Inaba<sup>2</sup>, T. Hitosugi<sup>3</sup>, T. Hasegawa<sup>3,4</sup>, S. Iio<sup>1</sup>, Y. Hirose<sup>4</sup>,

\*1 School of Engineering, The University of Tokyo, \*2 Tokyo Institute of Technology, \*3 School of Science, The University of Tokyo, \*4 Kanagawa Academy of Science & Technology Acknowledgement Prof. Z. Homonnay, Eotvos Lorand University,

### Preparation method of thin films; Pulsed laser ablation .PLA.

Pulse Laser : KrF excimer laser (Wave length ; 248 nm)

Pulse rate ; 2 Hz,

Energy density ; 5 J/cm<sup>2</sup>.shot

Target; Mixed pellet of TiO<sub>2</sub> (99.9 %) and enriched <sup>57</sup>Fe<sub>2</sub>O<sub>3</sub> (Fe:99.99 %,enrich <sup>57</sup>Fe:>95%), annealed at 1200 °C for 12 hrs.



Schematic diagram of film preparation by PLA

#### Dependence of oxygen pressure on Kerr rotation angle



The films prepared by Ts : 650. and PO<sub>2</sub>:10<sup>-6</sup>torr show strong Kerr effect.

#### Kerr rotation angles as function of magnetic fields



Hysteresis of Kerr rotation angles was observed at any wavelength of light, and maximum rotation angle was shown at wavelength of 370nm

# **M-H curve by SQUID**



Hysteresis of magnetization was clearly observed at 300K.These show that these films are ferromagnetic else a film prepared at<br/> $10^{-1}$  torr.Magnetic moment ...µ<sub>B</sub>

#### Characterization of films

# Scanning SQUID microscope images taken at 3K for 6%Fe doped TiO<sub>2</sub> films



Red parts; Flux from surface to over Blue part ; Flux from surface to inner. Under Zero field Scanning ranges; 200µmx200µm

Magnetic domain structures were observed in <sup>57</sup>Fe doped TiO<sub>2</sub> films prepared in 10<sup>-6</sup> torr, suggesting the presence of long range ordering of magnetic moment induced by Fe doping in these thin films

# **Characterization of Films by AFM**



From these micro images, it was found that the grain sizes are about 0.5  $\mu$ m, 0.2  $\mu$ m and less than 0.1  $\mu$ m for the samples prepared at 10<sup>-1</sup> torr, 10<sup>-6</sup> torr, and 10<sup>-8</sup> torr, respectively. This shows that the increase of the degree of vacuum reduces the grain size in the film.

# CEMS spectra of TiO<sub>2</sub> film doped with 6%<sup>57</sup>Fe<sub>2</sub>O<sub>3</sub> by Pulsed Laser ablation under different atmospheres



A paramagnetic doublet of  $Fe^{3+}$  was observed for  $TiO_2$  films under the low vacuum condition of  $10^{-1}$  Torr. Two magnetic sextets were observed in CEMS spectra of the films prepared under  $10^{-6}$  Torr and  $10^{-8}$  Torr.

#### Mysterious subspectra obtained in CEMS spectra Tentative results of TiO<sub>2</sub> films doped with Fe

- Fe doped TiO<sub>2</sub> epitaxial film deposited by PLA in  $10^{-6}$  torr was a rutile type with particle size of 0.2 µm, and Fe doped TiO<sub>2</sub> film deposited in  $10^{-8}$  torr was an different type film with particle size of .0. µm in diameter.
- The films prepared under  $PO_2=10^{-6}$ Torr and at  $T_s=650$ . showed the strong Kerr effect. SQUID magnetometer and Scanning SQUID microscope confirm that their films are ferromagnetic.
- Three kinds of Fe species were observed in CEMS spectra ;a sextet with  $B_{hf}$  =33T due to metallic Fe, another sextet with  $B_{hf}$ =29.T due to high spin Fe(IV) ( now metallic clusters in TiO<sub>2</sub> films), and a doublet due to Fe(III) doped in TiO<sub>2</sub>.
- Which species play a important role of DMS properties?

K. Nomura et al., *ICAME05 proceeding*, in press.

Mössbauer studies of SnO<sub>2</sub> powders doped with dilute <sup>57</sup>Fe, prepared by a sol-gel method

# Kiyoshi NOMUR<sup>1</sup>, Junko SAKUMA<sup>1,2</sup>, and Masuo TAKEDA<sup>2</sup>,

- <sup>1</sup> School of Engineering, The University of Tokyo
   <sup>2</sup> Faculty of Science, Toho University
- 1. Purpose
- 2. Experimental details a sol gel method
- 3. Results XRD, VSM, Mössbauer Spectra
- 4. Summary SnO<sub>2</sub> powders

The deposited films of  $SnO_2$  doped with Fe also showed the ferromagnetic behavior [4].  $\leftarrow$  J.M.D.Coey et al., *Appl. Phys. Lett.*, 84(2004)1332



Schematic diagrams showing a comparison of super-exchange and F-center exchange

super-exchange anti-ferromagnetic

F-center exchange

Hole-mediated exchange as a stronger interaction than electron-mediated exchange

Almost all n-type semiconductors have been reported High temperature magnetism in SnO<sub>2</sub> was prepared from the chemical synthesis of FeCl<sub>3</sub>, SnCl<sub>2</sub> and NH<sub>4</sub>OH solutions. ( A. Punnoose et al . Phys. Rev. B72, 054402 (2005) ).  $\rightarrow$  Ferromagnetically ordered Fe<sup>3+</sup> spins are converted to a paramagnetic spin system. The paramagnetic behavior is due to the incorporation of Fe ions into host lattices.

#### Purpose

SnO<sub>2</sub> structure is similar to TiO<sub>2</sub> structure. The films prepared with these oxides are transparent. Magneto-optical properties are expected by doping Fe into the transparent materials with large wide gap. We have prepared uniform powders of SnO<sub>2</sub> (Fe) by a sol-gel method. In order to confirm the ferromagnetism in detail, we have studied on nano-size powders of Fe doped SnO<sub>2</sub> mainly by Mössbauer spectroscopy.



SEM images and grain size of  $Sn_{1-x}^{57}Fe_xO_2$ 



#### XRD patterns of $Sn_{1-x}^{57}Fe_xO_2$ annealed at 500°C for 2 hrs



|   | Х                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | a,b                                         | с                                             | V                                               | (110)2Teata      | (110)            |  |  |
|---|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------|-----------------------------------------------|-------------------------------------------------|------------------|------------------|--|--|
|   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | (Å) (Å)                                     |                                               | (Å3)                                            | (deg)            | Intensity        |  |  |
| Ī | 0.0025                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 4.7307                                      | 3.1822                                        | 71.22                                           | 26.6400          | 3167             |  |  |
| Ī | 0.005                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 4.7322                                      | 3.1809                                        | 71.23                                           | 26.6600          | 2821             |  |  |
|   | 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 4.7300                                      | 3.1798                                        | 71.14                                           | 26.6400          | 3209             |  |  |
|   | 0.03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 4.7339                                      | 3.1793                                        | 71.25                                           | 26.6200          | 2464             |  |  |
|   | 0.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 4.7370                                      | 3.1834                                        | 71.43                                           | 26.5800          | 1666             |  |  |
|   | 0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 4.7340                                      | 3.1810                                        | 71.29                                           | 26.6600          | 712              |  |  |
|   | 0.15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 4.7367                                      | 3.1805                                        | 71.36                                           | 26.5800          | 973              |  |  |
| T | 4000<br>2000<br>0<br>4000<br>2000<br>0<br>4000<br>2000<br>2000<br>2000<br>4000<br>2000<br>6000<br>4000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>200<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2 |                                             | X=0.15<br>X=0.1<br>X=0.05<br>X=0.03<br>X=0.01 | 4.75<br>4.74<br>°V 4.73<br>4.72<br>4.71<br>4.70 | 0 0.05<br>Fe con | 0.1 0.15<br>tent |  |  |
|   | 6000<br>4000<br>2000<br>0<br>4000<br>2000<br>2000<br>26.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | X=0.01 X=0.0025 26.5 27.0 27.5 2Theta (deg) |                                               |                                                 |                  | • •              |  |  |

XRD (110) peaks



#### XRD patterns of Sn<sub>1-x</sub><sup>57</sup>Fe<sub>x</sub>O<sub>2</sub> annealed at 650°C for 2 hours



| X      | a,b    | с      | V     | (110)2Teata | (110)     |  |
|--------|--------|--------|-------|-------------|-----------|--|
|        | (Å)    | (Å)    | (Å3)  | (deg)       | Intensity |  |
| 0.0025 | 4.7287 | 3.1809 | 71.13 | 26.6600     | 3347      |  |
| 0.005  | 4.7302 | 3.1827 | 71.21 | 26.6600     | 2975      |  |
| 0.01   | 4.7307 | 3.1822 | 71.22 | 26.6400     | 3515      |  |
| 0.03   | 4.7383 | 3.1818 | 71.44 | 26.5800     | 4045      |  |
| 0.05   | 4.7409 | 3.1812 | 71.50 | 26.5600     | 3750      |  |
| 0.1    | 4.7376 | 3.1811 | 71.40 | 26.5800     | 2385      |  |
| 0.15   | 4.7390 | 3.1798 | 71.41 | 26.5800     | 2723      |  |





#### XRD of $Sn_{1-x}^{57}Fe_{x}O_{2}$ annealed at 600°C for 6 hours







Our XRD patterns of the samples prepared by a sol-gel methods. Only Cassiterite SnO2 was observed.

XRD of Sn<sub>1-x</sub>Fe<sub>x</sub>O<sub>2</sub> annealed at 600 °C

#### ← Punnoose studied on chemically synthesized powders of SnO2 doped with Fe.(Phy. Rev. B72 054402(2205)

FIG. 2. Panels (a) and (b) show XRD patterns of  $Sn_{1-x}Fe_xO$  (prepared at 200 °C) and  $Sn_{1-x}Fe_xO_2$  (prepared at 600 °C), respectively, along with reference lines of orthorhombic  $SnO_2$  (solid lines, marked "O"), romarchite SnO (dotted lines, marked "R") cassiterite  $SnO_2$  (dashed lines, marked "C") phases, bematite (marked "H"), and maghemite (marked "M") phases of  $Fe_2O_3$ .









# Comparison of our data with Punnoose data





XRD of  $Sn_{1-x}^{57}Fe_xO_2$  annealed at 600°C

MSMS06, June 11,

Kocovce, Slovakia

#### Summary of the results by XRD

- 1. XRD of the samples prepared by a sol-gel method showed only the single phase of Rutile structure of SnO<sub>2</sub>.
- The XRD peaks shifted to low angles with the increase of doped Fe the lattice constants of *a*, and *b* axes are longer and the lattice constant of *c* axis are shorter with doping Fe. →Fe doping bring up the lattice distortion.
- When annealed at 500 °C, the peak intensity weakened with doping Fe. →Fe disturbed the growth of crystalline.
   Supported by Wang J. et al, Non-Cryst. Solids 351,(2005)228)

#### R.T. Mössbauer spectra of $Sn_{1-x}^{57}Fe_xO_2$ annealed at 500°C for 2 hrs



#### 10 K Mössbauer spectra of $Sn_{1-x}^{57}Fe_xO_2$ annealed at 500°C for 2 hrs



|         | F                     | R.T. N                                                                                                          | löss                                             | bauer                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | spectra of                | $5 \operatorname{Sn}_{1-x}^{57} \operatorname{Fe}$  | $e_x O_2 a$                                         | nnea                                                                      | led a  | at 65  | 0°C                                                                                         | for 2    | hrs            |
|---------|-----------------------|-----------------------------------------------------------------------------------------------------------------|--------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|-----------------------------------------------------|-----------------------------------------------------|---------------------------------------------------------------------------|--------|--------|---------------------------------------------------------------------------------------------|----------|----------------|
|         |                       |                                                                                                                 |                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                           |                                                     | parameter                                           | 0.005                                                                     | 0.01   | 0.03   | 0.05                                                                                        | 0.1      | 0.15           |
|         | 100 -                 | Concernance of the second                                                                                       | Carrow Com                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | and provide the second    | DOUBLET (1)                                         | Area (%)                                            | 51.90%                                                                    | 66.20% | 65.00% | 60.50%                                                                                      | 55.40%   | 35.90%         |
|         | 98 -                  |                                                                                                                 | V                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | VV                        |                                                     | <u>δ (mm/s)</u>                                     | 0.36                                                                      | 0.35   | 0.35   | 0.35                                                                                        | 0.36     | 0.36           |
|         | 96 -                  |                                                                                                                 |                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $\Delta$ (mm/s)           | 0.91                                                | 0.87                                                | 0.88                                                                      | 0.96   | 0.81   | 0.84                                                                                        |          |                |
|         | 94 -                  |                                                                                                                 |                                                  | <b>V</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | X=0.15                    |                                                     | $\Gamma$ (mm/s)                                     | 0.82                                                                      | 0.71   | 0.52   | 0.75                                                                                        | 0.49     | 0.49           |
|         | 100 -                 | Colona Vais                                                                                                     | and the second                                   | and Count                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | and have been housed been | DOUBLET (2)                                         | <u>Area (%)</u>                                     | 10.00%                                                                    | 19.40% | 31.10% | 23.30%                                                                                      | 14.80%   | 12.40%         |
| %       | 98 -                  | •                                                                                                               |                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | v_0_10                    | -0.10                                               |                                                     | 0.34                                                                      | 0.3    | 0.31   | 0.3                                                                                         | 0.31     | 0.31           |
| )<br>N  | 96 -<br>94 -          |                                                                                                                 |                                                  | W                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | X=0.10                    |                                                     | $\Delta (\text{mm/s})$                              | 2.31                                                                      | 1.86   | 1.65   | 1.79                                                                                        | 1.0      | 1.0            |
| sit     |                       | alam tambar and a                                                                                               |                                                  | <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                           | MIVED $M \downarrow O(1)$                           | $\frac{1}{\text{Area}}$                             | 28 100/                                                                   | 0.71   | 0.32   | 16 2004                                                                                     | 9.00%    | 0.49<br>8 100/ |
| ter     |                       | Contract Contract                                                                                               | and France                                       | and a support of the | and handled Anderson      | $MIAED\;MFQ(1)$                                     | $\frac{\lambda(mm/s)}{\lambda(mm/s)}$               | 0.57                                                                      | 0.39   |        | 0.39                                                                                        | 0.67     | 0.10%          |
| Ē       | 90 -<br>93 -<br>90 -  |                                                                                                                 |                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | X=0.05<br>X=0.03          |                                                     | $\frac{0}{B_{\rm up}}$ (T)                          | 31.52                                                                     | 6.03   |        | 12.42                                                                                       | 39.86    | 27.01          |
| ۷e      |                       |                                                                                                                 |                                                  | VV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                           | MIXED M+Q (2)                                       | $\frac{D_{\rm HF}(\mathbf{r})}{\Lambda (\rm mm/s)}$ | 0.13                                                                      | 0.05   |        | 0.02                                                                                        | 0.03     | 0.02           |
| Relativ | 100 -                 | Contraction of the second s | and          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                           |                                                     | $\Gamma$ (mm/s)                                     | 2.93                                                                      | 2 01   |        | 2.06                                                                                        | <u> </u> | 1 51           |
|         | 98 -<br>96 -          |                                                                                                                 |                                                  | N N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                           |                                                     | Area (%)                                            | 2.75                                                                      | 2.01   | 4.00%  | 16.40%                                                                                      | 27.00%   | 47,50%         |
| ĽĽ      |                       |                                                                                                                 |                                                  | <b>VV</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                           |                                                     | $\delta$ (mm/s)                                     |                                                                           |        | 0.4    | 0.37                                                                                        | 0.38     | 0.38           |
|         | 94 -<br>100 -         | 1010erraciono-Docom                                                                                             |                                                  | **                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | X=0.01                    |                                                     | $B_{\mathrm{HF}}(\mathbf{T})$                       |                                                                           |        | 51.43  | 51.03                                                                                       | 50.98    | 51.04          |
|         |                       |                                                                                                                 | allow and all all all all all all all all all al |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                           |                                                     | $\Delta$ (mm/s)                                     |                                                                           |        | -0.16  | -0.19                                                                                       | -0.18    | -0.2           |
|         | 98 -                  |                                                                                                                 |                                                  | W                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                           |                                                     | Γ (mm/s)                                            |                                                                           |        | 0.36   | 0.5                                                                                         | 0.4      | 0.41           |
|         | 96 -<br>100 -<br>99 - | -10                                                                                                             | -5<br>Velo                                       | city(mm/s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | X=0.005                   | 100%<br>80%<br>© 60%<br>E 40%<br>20%<br>0%<br>0 0.0 | 5 0.1 0.15                                          | 1<br>2<br>1<br>2<br>2<br>0.4<br>(% 0.3<br>(% 0.3)<br>0.2<br>0.1<br>0<br>0 | 0 0.05 |        | 2.5<br>(%1.5<br>(%1.5<br>(%)<br>(%)<br>(%)<br>(%)<br>(%)<br>(%)<br>(%)<br>(%)<br>(%)<br>(%) |          |                |



#### Mössbauer spectra results and considerations

1. The large intensity of magnetic relaxation subspectra were obtained for  $Sn_{1-x}Fe_xO_2$  (x=0.1), which were prepared by a sol-gel method, and annealed at 600 °C for 6 hours.

2. The magnetic components increased with the decrease of doped Fe.

3. When SnO<sub>2</sub> powders doped with more than 5% Fe were annealed at 650°C for 2 hours and 600 °C for 6 hours, antiferromagnetic  $\alpha$ -Fe<sub>2</sub>O<sub>3</sub> is grown with high doping and high temperature annealing.  $\leftarrow$  phase decomposition.

4. Assignment of components

Doublet1 :  $Fe^{3+}$  substituted at Sn site in SnO<sub>2</sub> lattice.

Doublet2 :  $Fe^{3+}$  occupied at interstitial site among  $SnO_2$  lattice

A broad magnetic component :  $Fe^{3+}$  in  $SnO_2$  lattice

A sharp magnetic sextet :  $\alpha$ -Fe<sub>2</sub>O<sub>3</sub> separated out of SnO<sub>2</sub> lattice

#### .SEM observation .



### .XRD results .



The XRD peaks of Iron oxides and impurity were not observed for the samples with more than 5% doped iron.

All samples showed the rutile type crystalline although the crystalline were so poor for the sample annealed at low temperature.

### .VSM.

Fig.4 R.T. VSM saturated magnetization of Sn<sub>1-x</sub>Fe<sub>x</sub>O<sub>2</sub>





The ferromagnetism appeared due to the long range ordering at Room temperature .

The saturation magnetization showed the maximum for 10% Fe doped  $\mathrm{SnO}_2$ .

Fig.5 R.T. magnetizations curve of Sn<sub>0.9</sub>Fe<sub>0.1</sub>O<sub>2</sub>



## .RT <sup>57</sup>Fe M**ö**ssbauer spectra of Sn<sub>0.9</sub>Fe<sub>0.1</sub>O<sub>2</sub>

Fig.6 Mössbaure spectra at R.T. of  ${\rm Sn}_{0.9}{\rm Fe}_{0.1}{\rm O}_2$ 

Table.1 Mössbaure spectra parameters of Sn<sub>0.9</sub>Fe<sub>0.1</sub>O<sub>2</sub>



|                    | parameter       | 500 °C | 600 °C | 650 °C |  |
|--------------------|-----------------|--------|--------|--------|--|
| DOUBLET (1)        | Area (%)        | 83.10% | 40.30% | 55.40% |  |
| Fe() (),           | $\delta$ (mm/s) | 0.37   | 0.36   | 0.36   |  |
| ις(·) ο μ          | $\Delta$ (mm/s) | 0.69   | 0.81   | 0.81   |  |
|                    | $\Gamma$ (mm/s) | 0.49   | 0.70   | 0.49   |  |
| DOUBLET (2)        | Area (%)        | 16.90% | 12.60% | 14.80% |  |
| Fe()7,             | $\delta$ (mm/s) | 0.3    | 0.31   | 0.31   |  |
| +                  | $\Delta$ (mm/s) | 1.56   | 1.56   | 1.6    |  |
|                    | $\Gamma$ (mm/s) | 0.49   | 0.70   | 0.49   |  |
| MIXED M+Q (1       | ) Area (%)      | -      | 41.50% | 9.00%  |  |
| Magnetic           | $\delta$ (mm/s) | -      | 0.39   | 0.67   |  |
| Relaxation         | Внг (T)         | -      | 25.67  | 39.86  |  |
|                    | $\Delta$ (mm/s) | -      | 0.04   | 0.03   |  |
|                    | $\Gamma$ (mm/s) | -      | 0.26   | 1.51   |  |
| MIXED M+Q (2       | ) Area (%)      | -      | 5.50%  | 27.00% |  |
| Fe <sub>2</sub> Oz | $\delta$ (mm/s) | -      | 0.37   | 0.38   |  |
| ΖJ                 | Bhf (T)         | -      | 51.08  | 50.98  |  |
|                    | $\Delta$ (mm/s) | _      | -0.20  | -0.18  |  |
| ntensity           | Γ (mm/s)        | -      | 0.70   | 0.40   |  |
|                    |                 |        |        |        |  |

With the increase of annealing temperatures, the intensity ratio of anti-ferromagnetic  $.-Fe_2O_3$  increased. It results in the decrease of saturated magnetization.

#### Low temperature Mössbauer spectra of Sn<sub>0.9</sub>Fe<sub>0.1</sub>O<sub>2</sub>



The Mössbauer parameters of  $Sn_{0.9}Fe_{0.1}O_2$  were different from that of  $.-Fe_2O_3$ . The magnetic relaxation is similar to Ferromagnetic  $\gamma$ -Fe<sub>2</sub>O<sub>3</sub>.

.Summary.

From the results of XRD, it is found that lattice parameters, a and b, increased, and c decreased with the increase of Fe concentration. The lattice be distorted with doping of Fe

Large magnetic hysteresis was observed for 10% Fe doped  $Sn_{0.9}Fe_{0.1}O_2$ . The magnetization showed the maximum for Sn0.9Fe0.1O2 annealed at 600°C.

When the annealing temperature was high, the magnetization decreased due to the phase separation of anti-ferromagnetic  $a-Fe_2O_3$ .

It is considered from Low temperature Mössbauer spectra that the magnetic relaxation components are due to superparamagnetism of ferric  $-Fe_2O_{3.}$ 

Coey et al. reported that  $Sn_{0.86}Fe_{0.14}O_2$  film show the magnetization 2.2 Am<sup>2</sup>kg<sup>-1</sup> at room temperature, and explained the mechanism due to Superexchange and F-centor exchange(FCE) model (Coey et al., Appl. Phys. Lett.,84(2004)1332)

a) General speaking, oxides show antiferromagnetic behavior due to minus exchange interactions for  $Fe^{3+}-O^{2}-Fe^{3+}$  covalent bond .

b) If hole defect of  $O^{2-}$  orbital, 1 electron is covalent with 2 Fe orbital to make ferromagnetic behavior of Fe<sup>4+</sup>-O<sup>2-</sup>-Fe<sup>3+</sup> due to plus super exchange interactions.

c) Ferromagnetic coupling of ferric ions via an electron trapped in a bridging oxygen vacancy (F centor) is proposed to explain the high Curie temperature.

d) Long range interactions through Sn <sup>3+</sup> are possible?

