msms⁰⁶

Kočovce, Slovakia June 11 – 15, 2006

AFM AND MÖSSBAUER SPECTROMETRY INVESTIGATION OF CRYSTALLIZATION PROCESS IN Fe-Mo-Cu-B ALLOY

M. Pavúk¹, M. Miglierini^{1, 2}, M. Vůjtek², M. Mašláň², R. Zbořil² and Y. Jirásková³

¹ Slovak University of Technology, Bratislava, Slovakia

- ² Nanomaterial Research Centre, Olomouc, Czech Republic
- ³ Institute of Physics of Materials AS CR, Brno, Czech Republic

Aim

 evolution of surface crystallization of amorphous metallic glass

- atomic force microscopy AFM
- conversion electron Mössbauer spectroscopy CEMS
- transmission Mössbauer spectroscopy TMS

Nanocrystalline alloys

Features:

- two-phase structural and magnetic behaviour
- high saturation magnetization and permeability
- nanocrystalline grains
 - origin of soft magnetic properties
 - thermal stabilization of the structure

Technical applications:

• power transformer, magnetic heads, sensors, magnetic shielding

Conventional crystalline microstructure, amorphous structure, nanocrystalline structure

Preparation of samples

- annealing in vacuum
- annealing temperatures: according to DSC

msm

XRD (Fe₇₉Mo₈Cu₁B₁₂) Top/Bottom

• crystallization at the bottom side of the ribbon is more developed as on the opposite side

msm

- *T*_{x1} approx. 410 430 °C
- sample is not fully amorphous in A.Q. state

Atomic force microscopy

Principle:

- an atomically fine tip scans the surface of the sample
- the attractive or repulsive force between the tip and the sample leads to a deflection of the cantilever
- a laser beam measures the displaced of the probe tip
- the feedback system works to keep the tip-sample force steady

Atomic force microscopy

The AFM can operate in three different ways:

Contact mode

 An extremely low force (~10⁻⁹ N) is maintained on the cantilever, thereby pushing the tip against the sample as it rasters. The contact force causes the cantilever to bend to accommodate changes in topography.

Non-contact mode

• The cantilever oscillates above the sample's surface and is affected by surface/tip (van der Waals) forces.

Tapping mode

• The AFM tip taps the sample surface during the closest point of approach of an oscillation cycle. The interaction with the sample surface changes the vibration frequency.

AFM - Experimental details

Microscope: AFM Explorer (ThermoMicroscopes, USA)

<10 nm

 the microscope was placed on a pneumatic antivibration desk, under a damping cover

Probes: Veeco 1650-00

- Material: Si
- Tip Height: 10 15 μm
- Tip Radius:

Measurements:

- in air and at room temperature
- in a Non-contact mode
- the size of the scanned area was 2 x 2 μm and the resolution of image was 300 x 300 pixels

AFM

msms⁰⁶

AFM (Fe₇₉Mo₈Cu₁B₁₂) A.Q., Top

AFM (Fe₇₉Mo₈Cu₁B₁₂) 370 °C

AFM (Fe₇₉Mo₈Cu₁B₁₂) 410 °C

avg. height of o ~ 13 nm; O ~ 26 - 119 nm

msms

AFM (Fe₇₉Mo₈Cu₁B₁₂) 450 °C

AFM (Fe₇₉Mo₈Cu₁B₁₂) 470 °C

AFM (Fe₇₉Mo₈Cu₁B₁₂) 650 °C

AFM (Fe₇₉Mo₈Cu₁B₁₂) A.Q., Top/Bottom

msms

XRD, CEMS ($Fe_{79}Mo_8Cu_1B_{12}$) A.Q.

msms

CEMS, TMS (Fe₇₉Mo₈Cu₁B₁₂) CR/AM

msms⁰⁶

mössbauer spectroscopy in materials science06

Conclusions:

- Sample is not fully amorphous even in A.Q. state
- Crystallization at the bottom (wheel) side of the ribbon is more developed as on the opposite (air) side
- Crystallization starts earlier in the surface areas of the ribbon than in the bulk region
- Onset of crystallization on surface ~ 410 °C
- as-quenched (amorphous) and nanocrystalline Fe₇₉Mo₈Cu₁B₁₂
 - combined hyperfine interactions:
 - non-magnetic regions
 - magnetic regions
 - combined structure:
 - (nano) crystallites
 - residual amorphous matrix

mössbauer spectroscopy in materials science06

Future objectives:

• Calculate the grain size at different temperatures of annealing from X-ray diffraction images and compare it with AFM observations

Acknowledgement:

- P. Švec (Bratislava) X-ray diffraction
- D. Janičkovič (Bratislava) Sample preparation

Grants VEGA 1/1014/04, FR/SL/FEISTU/04, and MSM6198959218