Preparation and properties of Fe and Fe_3O_4 nanoparticles embedded in ZrO₂ matrix

P. Roupcová^{1, 2}, O. Schneeweiss¹

¹Institute of Physics of Materials AS CR, Czech Republic ²Institute of Materials Engineering, Brno University of Technology, Czech Republic

Experimental details

- The samples of the nanocomposite were prepared by mixing of nanocrystalline Fe_3O_4/Fe_2O_3 (~30 nm) or Fe_2O_3 (>100 nm) and ZrO_2 or ZrH_2 (~60÷110 nm) in agate mortar.
- Magnetic measurements were carried out using vibrating sample magnetometer (VSM) during a measurement in high temperature (at 293÷1093K), in the vacuum (10⁻² Pa) and in the pure hydrogen (5N) atmosphere.
- ⁵⁷Fe Mössbauer spectra (MS) were collected by a standard transmission method at room temperature using ⁵⁷Co/Rh source.
- XRD was performed using CoKα radiation.
- Temperature dependence of the magnetic moment were measured for determination of critical temperatures of magnetic transition and isothermal transformation. The points corresponding to 50% of isothermal transformation were selected for the calculation of general rate of diffusion transformation in hydrogen by means of Arhenius equation.

TEM

Selected area diffraction pattern from fine particles was identified as cubic form of ZrO_2 . The clusters of Fe_3O_4 are disseminated in zirconia matrix.

XRD (as-prepared samples)

XRD Data

as prepared	annealing at 800°C in vacuum		
ZrH ₂ - 43%, Hematite - 57%	FeO-30%, ZrO ₂ m-20%, Magnetite -20%, Zr-20%,Fe-10%		
ZrH ₂ - 110 nm, Hematite - 90 nm	FeO-42nm, ZrO_2m -23nm, Fe_3O_4 -36nm, Zr-25nm, Fe-45nm		
ZrH ₂ - 98%, Magnetite - 2%	FeO-15%, ZrO ₂ m-45%, Fe-15%, ZrO ₂ t-25%		
ZrH ₂ - 108 nm, Magnetite - 30 nm	FeO-51nm, ZrO ₂ m-38nm, Fe-16nm, ZrO ₂ t-22nm		
ZrO ₂ m - 99%, Magnetite - 1%	Magnetite - 42%, ZrO ₂ m - 53%, Hematite - 5%		
ZrO ₂ - 30 nm, Magnetite - 30 nm	Magnetite - 42 nm, ZrO ₂ m - 25 nm, Hematite - 41 nm		
ZrO ₂ c - 98%, Magnetite - 2%	Magnetite - 18%, ZrO ₂ c - 75%, Hematite - 7%		
ZrO ₂ - 34 nm, Magnetite - 33 nm	Magnetite - 42 nm, ZrO ₂ c - 35 nm, Hematite - 51 nm		
	as prepared ZrH2 - 43%, Hematite - 57% ZrH2 - 110 nm, Hematite - 90 nm ZrH2 - 98%, Magnetite - 2% ZrH2 - 108 nm, Magnetite - 30 nm ZrO2m - 99%, Magnetite - 30 nm ZrO2 - 30 nm, Magnetite - 30 nm		

Temperature dependence of the magnetic moment and hysteresis loops of the as prepared powder (before and after TM)

XRD (annealed in hydrogen and in vacuum)

MS and XRD data

Phase composition of the samples (originally cubic $ZrO_2 + Fe_3O_4$) annealed by measurement of thermomagnetic curve up to 800°C in hydrogen and in vacuum.

C-ZrO ₂ + Fe ₃ O ₄	Mössbauer spectroscopy				XRD		
as- prepared	nanocrystalline or/and amorphous structure of magnetite and maghemite				79% c-ZrO ₂	21% Fe ₃ O ₄	
in H_2	90% α-Fe	8%Fe(III) IS=0.2	2% Fe(III) IS=0.7		58% t-ZrO ₂	24% c-ZrO ₂	18% α-Fe
in vacuum	50% Fe ₃ O ₄	34% Fe ₂ O ₃	11% γ-Fe ₂ O ₃	3%Fe(III) IS=0.2	75% c-ZrO ₂	7% Fe ₂ O ₃	18% Fe ₃ O ₄
						_ 3	

Isothermal curves + hysteresis loops

Arhenius equation: (general rate of diffusion transformation)

$$y' = A \cdot \exp\left(\frac{-Q}{R \cdot T}\right) \Longrightarrow \ln y' = \ln A + \frac{Q}{R} \cdot \frac{1}{T}$$

y' - rate of decrease magnetic moment

Conclusions

- The as-prepared powders consist of mixture of Fe₃O₄(30nm), Fe₂O₃ (90 nm), ZrO₂-monoclinic (30 nm) and cubic (35 nm) and ZrH₂ (110 nm) phases.
- The samples annealed in vacuum are formed by particles of FeO (50 nm), Fe₃O₄(45 nm), Fe₂O₃ (50 nm), ZrO₂-monoclinic (25 nm), tetragonal (22 nm) and cubic (35 nm).
- Annealing in hydrogen causes reduction of iron oxides to pure iron particles (180 nm) and clusters of Fe atoms in ZrO₂.
- The magnetic parameters confirm full transformation of iron oxides to α-Fe.
- The activation energy of transformation Fe_3O_4 to α -Fe calclulated using Arhenius equation exhibit different values below ($Q_H = 1.0 kJ/mol$) and above ($Q_H = 3.1 kJ/mol$) magnetic transition temperature (Hedvall effect).

Thank you for your attention

- Thank to Dr. N. Pizurová for the TEM analysis.
- This work was supported by the Czech Ministry of Education, Youth and Sports (1M6198959201) and Academy of Sciences of the Czech Republic (AV0Z20410507).