THERMAL EXPANSION OF NANOPERM-TYPE ALLOYS FROM IN-SITU X-RAY DIFFRACTION

J. Bednarcik^a, M. Miglierini^{b,c}, C. Curfs^d, H. Franz^a

^a HASYLAB am DESY, Notkestrasse 85, D-22603 Hamburg, Germany

^b Slovak University of Technology, Ilkovicova 3, 812 19 Bratislava, Slovakia

^c Centre for Nanomaterial Reserach, Palacky University, Svobody 26, 771 46 Olomouc, Czech Republic

^d European Synchrotron Radiation Facility ESRF, BP 220, 38043 Grenoble, France

NANOPERM-type alloys with nominal compositions of $(Fe_{1-x}Co_x)_{79}Mo_8Cu_1B_{12}$ and $(Fe_{1-x}Co_x)_{76}Mo_8Cu_1B_{15}$ (x = 0 and 0.5) were prepared in a form of 6 mm wide and about 20 μ m thick ribbons by single-roller melt-spinning technique. Room temperature Mössbauer (MSB) effect experiments on as-prepared amorphous ribbons were carried out in transmission geometry using a ⁵⁷Co/Rh source mounted on a constant acceleration driving system. Temperature evolution of the as-quenched ribbons during constant-rate heating (10 °C/min) was continuously followed using a high-energy (88 keV) X-ray diffraction (XRD), performed on the ID11 undulator beamline at the ESRF (Grenoble, France). MSB spectroscopy and XRD confirm amorphous nature of melt-spun ribbons. Furthermore, MSB reveals significant change of magnetic state of the as-quenched precursors when substituting of Fe by Co (x=0.5). Analysing series of XRD patterns in a reciprocal space yields thermal expansion of amorphous alloys providing insight about the thermally activated effects such as relaxation and crystallization.

This work was supported by the grants VEGA 1/0033/10 and MSM6198959218.

Presenting author:	Jozef Bednarcik
Address:	HASYLAB am DESY, Notkestr. 85, D-22603 Hamburg, Germany
FAX:	+49-40-8998-2720
E-mail:	jozef.bednarcik@desy.de