THERMAL DECOMPOSITION OF BARIUM FERRATE(VI) IN AIR

L. Machala, R. Zboril, V. K. Sharma, Z. Homonnay Palacký University in Olomouc, Czech Republic

Thermal decomposition of barium ferrate(VI) (BaFeO₄) in static air was investigated using ⁵⁷Fe Mössbauer spectroscopy, X-ray powder diffraction (XRD), thermal analysis and microscopic techniques (TEM, SEM). BaFeO₃ was confirmed to be the primary decomposition product above 190 °C. BaFeO₃ was found to be unstable in air at high and/or room temperature reacting with air-CO₂ towards orthorhombic BaCO₃ and speromagnetic amorphous Fe₂O₃ nanoparticles (< 5 nm). The room temperature Mössbauer spectrum of the product of decomposition at 300 °C consists of two components. A singlet ($\delta_{\text{Fe}} = -0.27 \text{ mm/s}$) corresponds to tetravalent iron atoms in rhombohedral BaFeO₃ structure, while a doublet (δ_{Fe} = 0.35 mm/s, $\Delta E_{\text{Q}} = 0.56 \text{ mm/s}$) was ascribed to amorphous Fe₂O₃. At 600 °C, the solid state reaction between the as-formed Fe₂O₃ and BaCO₃ towards barium ferrite (BaFe₂O₄) nanoparticles (20-100 nm), takes place. The overall decomposition mechanism of BaFeO₄ in air can be described by the following chemical equations:

300 °C:

$$BaFeO_4 \rightarrow BaFeO_3 + 1/2 O_2$$

$$BaFeO_3 + CO_2 \rightarrow BaCO_3 + 1/2 Fe_2O_3 + 1/4 O_2$$

600 °C:

$$Fe_2O_3 + BaCO_3 \rightarrow BaFe_2O_4 + CO_2.$$

Presenting author:	Libor Machala
Address:	Centre for Nanomaterial Research, Šlechtitelů 11, 783 71 Olomouc
	- Holice
FAX:	+ 420 58 563 4958
E-mail:	libor.machala@upol.cz