MÖSSBAUER STUDY OF IRON PHASES OF IRON THIN FILMS ON Si/SiO_x SUBSTRATE AND AT DEPOSITED CARBON NANOTUBES

O. Schneeweiss¹, B. David¹, O. Jašek², L. Zajíčková², M. Vondráček³

¹Institute of Physics of Materials AS CR, Žižkova 22, 61662 Brno Czech Republic;

² Faculty of Science, Masaryk University, Kotlářská 2, 611 37 Brno, Czech Republic;

³Institute of Physics AS CR, Cukrovarnická 10, CZ-162 00 Praha 6, Czech Republic

Phase composition of ~10 nm thick Fe film on silicon substrates with 200 nm thick SiO_x layer after annealing in vacuum and in CH₄+H₂ was investigated using Conversion Electron Mössbauer spectroscopy (CEMS), X-ray photoelectron spectroscopy, and SEM. CEMS spectra show that the original iron film was formed by Fe³⁺ phase. This phase is stable after the annealing in vacuum below 500 °C but formation of phases with Fe²⁺ and Fe⁰ was observed after annealing at higher temperatures. Photoelectron spectroscopies detected changes in morphology after vacuum annealing above 300 °C where the continuity of the iron film was broken. Annealing of the Si/SiO_x/Fe samples in CH₄+H₂ atmosphere caused reduction of the original Fe^{3+} to Fe^{2+} and α -Fe. Analysis of CEMS spectra of the sample with grown multi-walled carbon nanotubes shows that the dominating part of iron atoms is present in Fe₃C and Fe₅C₂ phases. Besides their stoichiometric forms spectrum components which can be ascribed to the amorphous $Fe_{5-x}C_{2+x}$ carbides, γ -Fe, and Fe^{3+} were observed.

Presenting author: Oldřich Schneeweiss

Address: Institute of Physics of Materials AS CR, Žižkova 22, 61662 Brno

Czech Republic

FAX: +420 541218657

E-mail: schneew@ipm.cz