COMPARISON OF FEATURES OF STRUCTURAL TRANSITIONS IN LaMnO_{3+ δ} AND La_{1-x}Sr_xMnO_{3+ δ} (x = 0.05 – 0.2)

V. Sedykh¹ and V.S. Rusakov²

¹Institute of Solid State Physics, Russian Academy of Sciences, Chernogolovka, Russia ²Moscow State University, Physical Department, Moscow, Russia

The features of the structural transformations in La_{1-x}Sr_xMn_{0.98}Fe_{0.02}O_{3+ δ} (x = 0.05÷0.20) depending on the Sr concentration have been investigated by Mössbauer spectroscopy and X-ray diffraction analysis. The features of the phase formation and suppression in the basic compound LaMn_{0.98}Fe_{0.02}O_{3+ δ} and in La_{1-x}Sr_xMn_{0.98}Fe_{0.02}O_{3+ δ} have been compared and both their common regularities and the essential distinctions between themselves have been revealed.

In undoped LaMnO_{3+ δ} with the stoichiometric composition (*PnmaII* phase, $\delta = 0$) all lattice positions are occupied and only Jahn-Teller Mn³⁺ ions are present. Under oxidation a part of Mn³⁺ transfers to Mn⁴⁺ and additional oxygen ($\delta > 0$) occupies interstitial positions in the lattice notably distorting it. As the Mn⁴⁺ concentration increases, phase transitions appear.

Doping with Sr^{2+} occupying La^{3+} sites results in an appearance of vacant oxygen sites in the lattice. Therefore a part of Mn^{3+} ions transfers to Mn^{4+} ions already during synthesis and additional oxygen occupies vacant oxygen sites in the lattice. As the Sr^{2+} concentration increases, the concentration of Mn^{4+} ions and additional oxygen in lattice sites increases that leads to a decrease in an amount of interstitial oxygen and, correspondingly to a decrease in lattice distortions related to it and in the value of quadrupole splitting.

The work was supported by the Russian Foundation for Basic Research (project no. 09--02--00767) and by the Program of Russian Academy of Sciences "Quantum Physics of Condensed Media".

Presenting author:	Vera Sedykh
Address:	Institute of Solid State Physics, Russian Academy of Sciences,
	Chernogolovka, 142432, Russia
E-mail:	<u>sedykh@issp.ac.ru</u>