Aluminium base amorphous and nanocrystalline alloys with Fe impurity

Sitek J., Degmová J.

Department of Nuclear Physics and Technology, SUT Bratislava

Al based materials → more than 90 % Al

Rapid quenching methods → AI → new microstructures and property enhancements

Mechanical properties → partial crystallization

→ nanostructured materials

Base
$$\rightarrow$$
 Al – TM – RE

 \downarrow

Transition metals Rare earth

Ways

1) Undercooling and crystallization

Al intermetallic phases, nanocrystalline Al in amorphous rest

2) Mechanical alloying

Provides insight in nanocrystalline structure and amorphisation

Type of samples

- 1) Fe Sm, Fe Y, Fe Ni \rightarrow first works
- 2) Fe Nb → phase diagram Al Nb is similar to Al rare earth

Our samples Al₉₀Fe₇Nb₃ and Al₉₄Fe₂V₄

Planar flow casting – Institute of Physics, Slovak Academy of Science

As-cast samples

Sample of Al₉₀Fe₇Nb₃

Amorphous Al-Fe

 δ =0.18 mm/s

 Δ =0.52 mm/s

Fadeeva et. al: Mat. Sc. Eng. A206

(1996) 90-94

Two cluster model

Al clusters, Al-Fe-Nb clusters

Švec et.al Mat. Sc. Eng. A375-377

(2004) 946-950

Our results: δ =0.18 mm/s, Δ =0.52 mm/s, A=63% δ =0.17 mm/s, Δ =0.29 mm/s, A=37%

XRD spectrum of Al₉₀Fe₇Nb₃

 \triangle ...Al₃Nb

▲ ...Al

As-cast samples

Sample of Al₉₄Fe₂V₄

This sample is not fully amorphous

Our results: δ =0.21 mm/s, Δ =0.59 mm/s, A=53% δ =0.22 mm/s, Δ =0.33 mm/s, A=47%

XRD spectrum of Al₉₄Fe₂V₄

Lamb – Mössbauer factor

Area method was used to determine f-factor

$$AI_{90}Fe_7Nb_3$$
 $AI_{94}Fe_2V_4$
 $f=0.26 \pm 0.02$ $f=0.31 \pm 0.02$

Debye temperature was calculated using classical formula:

$$f = \exp\left\{-\frac{6E_R}{k_b\Theta_D} \cdot \left[\frac{1}{4} + \left(\frac{T}{\Theta_D}\right)^2 \cdot \int_0^{\frac{\Theta_D}{T}} \frac{x}{e^x - 1} dx\right]\right\}$$

$$\Theta_{\rm D} = 296 \pm 5 \, {\rm K}$$
 $\Theta_{\rm D} = 318 \pm 5 \, {\rm K}$

For the $Al_{90}Fe_7Nb_3$ was Debye temperature derived from measurement of second order Doppler shift as Θ_D =325 ± 5 K

The effective Debye temperature for binary system is:

$$\Theta_{\mathit{eff}} = \Theta_{\mathit{host}} \sqrt{\frac{M_{\mathit{host}}}{M_{\mathit{imp}}}} \sqrt{\frac{\lambda_{\mathit{imp}}}{\lambda_{\mathit{host}}}}$$

usually
$$\frac{\lambda_{imp}}{\lambda_{host}} \approx 1$$

For pure aluminium: $\Theta_D=428 \text{ K}$

For iron impurity in aluminium:

$$\Theta_{\rm eff}$$
=295 K

Close to Debye temperature of as-cast Al₉₀Fe₇Nb₃

Crystallization process

The linear heating of as-cast samples of both compositions exhibits distinct transformation stages.

Annealing temperature 473 K \rightarrow no change of parameters of Mössbauer spectra.

According to TEM and XRD (Švec et.al Mat. Sc. Eng. A375-377 (2004) 946-950) evidence of presence of nanometer size of α-Al particles after first stage at 545 K.

Annealing at 623 K

Mössbauer spectra of Al₉₀Fe₇Nb₃:

The value of Mössbauer parameters increased:

 $\delta_1 = 0.19 \text{ mm/s } (0.18)$

 Δ_1 =0.59 mm/s (0.52)

 $\delta_2 = 0.19 \text{ mm/s } (0.17)$

 Δ_2 =0.34 mm/s (0.29)

nanocrystalline structure

1 – nanocrystalline Al (Fe), 2 – Al-Fe-Nb cluster

Annealing at 623 K

Mössbauer spectra of Al₉₄Fe₂V₄:

The value of Mössbauer parameters increased:

$$\delta_1 = 0.21 \text{ mm/s } (0.21)$$

$$\Delta_1 = 0.59 \text{ mm/s } (0.59)$$

$$\delta_2 = 0.22 \text{ mm/s } (0.22)$$

$$\Delta_2 = 0.34 \text{ mm/s} (0.33)$$

no change of parameters comparing with as –cast sample

as - cast sample was already nanocrystalline

Annealing at 773 K

Next transformation stage is at 725 K. Above this temperature, intermetallic phases and α -Al are created.

Mössbauer spectra of Al₉₀Fe₇Nb₃:

- 1) In the first step metastable phase Al₆Fe is created
- This phase transforms to the intermetallic phase Al₃Fe (Al₁₃Fe₄)
- 3) Mössbauer spectrum is fitted by three singlets

(Forder et al., Scripta Mat. Vol.35, 1996, 1167)

(Nasu et al., J.Physics C1, 41, 1980, 385)

Annealing at 773 K

Mössbauer spectra of Al₉₄Fe₂V₄:

Al₃Fe → less amount than in previous sample

New doublet...polycrystalline aluminium containing Fe

?

Al $_3$ Fe... δ_4 =0.09 mm/s, δ_5 =0.23 mm/s, δ_6 =0.38 mm/s New doublet... δ_3 =0.22 mm/s, Δ_3 =0.52 mm/s A=21% A=79%

Annealing at 873 K

Next transformation stage is at 841 K. Above this temperature, intermetallic phases and polycrystalline aluminium are created.

Mössbauer spectra of Al₉₀Fe₇Nb₃:

- 1) Dominant is Al₃Fe phase.
- 2) Doublet corresponds to the component containing iron in different sites as impurity in aluminium.

Al₃Fe... δ_4 =0.04 mm/s, δ_5 =0.21 mm/s, δ_6 =0.39 mm/s New doublet... δ_3 =0.20 mm/s, Δ_3 =0.53 mm/s

A=72% A=28%

Annealing at 873 K

Mössbauer spectra of Al₉₄Fe₂V₄:

Mössbauer parameters of quadrupole splitting and isomer shift substantially changed.

We suppose:

Polycrystalline aluminium with the rest of intermetallic phases containing other constituent elements (Nb, V).

Al₃Fe... δ_4 =0.02 mm/s, δ_5 =0.21 mm/s, δ_6 =0.42 mm/s New doublet... δ_3 =0.33 mm/s, Δ_3 =0.42 mm/s A=18% A=82%

Conclusion

- 1) Amorphous and nanocrystalline state depends on additional constituent elements therefore
- 2) The alloy structure and its properties are modified by Fe, Nb and V elements
- 3) Crystallization process of sample $Al_{90}Fe_7Nb_3$ differs from the sample of $Al_{94}Fe_2V_4$
- 4) The alloy properties could be controlled by the crystallization process
- 5) The final properties of Al based alloys could be tailored by suitable combinations of constituent elements and by the annealing process